Geometric effects on thermoelastic damping in MEMS resonators
نویسنده
چکیده
The effects of geometry on the energy dissipation induced by thermoelastic damping in MEMS resonators are investigated numerically using a finite element formulation. The perturbation analysis is applied to derive a linear eigenvalue equation for the exponentially decaying rate of the mechanical oscillation. The analysis also involves a Fourier method that reduces the dimensionality of the problem and considerably improves the computational efficiency. The method is first validated by comparing the two-dimensional model to the existing analytical solutions for a simply supported beam system, and then it is extended to a three-dimensional axisymmetric geometry to obtain the energy loss as a function of the geometric parameters in a silicon ring resonator. The computational results reveal that there is a peak value for the resonant frequency when the radial width of the ring varies. In addition, the quality factor (Q-factor) decreases with the radial width as a monotonic function. r 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Effect of thermoelastic damping in nonlinear beam model of MEMS resonators by differential quadrature method
This paper presents a nonlinear model of a clamped-clamped microbeam actuated by an electrostatic load with stretching and thermoelastic effects. The frequency of free vibration is calculated by discretization based on the Differential Quadrature (DQ) Method. The frequency is a complex value due to the thermoelastic effect that dissipates energy. By separating the real and imaginary parts of fr...
متن کاملThermo-Elastic Damping in Nano-beam Resonators Based on Nonlocal Theory
In this article thermoelastic damping in nano-beam resonators is investigated based on nonlocal theory of elasticity and the Euler-Bernoulli beam assumptions. The governing equation of deflection of the beam is obtained from shear and moment resultants and stress–strain relationship of the nonlocal elasticity model and also the governing equations of thermoelastic damping are established by usi...
متن کاملThermoelastic Damping and Frequency Shift in Kirchhoff Plate Resonators Based on Modified Couple Stress Theory With Dual-Phase-Lag Model
The present investigation deals with study of thermoelastic damping and frequency shift of Kirchhoff plate resonators by using generalized thermoelasticity theory of dual-phase-lag model. The basic equations of motion and heat conduction equation are written with the help of Kirchhoff-Love plate theory and dual phase lag model. The analytical expressions for thermoelastic damping and frequency ...
متن کاملDamping and Frequency Shift in Microscale Modified Couple Stress Thermoelastic Plate Resonators
In this paper, the vibrations of thin plate in modified couple stress thermoelastic medium by using Kirchhoff- Love plate theory has been investigated. The governing equations of motion and heat conduction equation for Lord Shulman (L-S) [1] theory are written with the help of Kirchhoff- Love plate theory. The thermoelastic damping of micro-beam resonators is analyzed by using the normal mode a...
متن کاملInvestigation of Thermoelastic Damping in the Longitudinal Vibration of a Micro Beam
In the design of high Quality factor (Q) micro or nano beam resonators, different dissipation mechanisms may have damaging effects on the quality factor. One of the major dissipation mechanisms is the thermoelastic damping (TED) that needs an accurate consideration for prediction. In this paper, thermoelastic damping of the longitudinal vibration of a homogeneous micro beam with both ends clamp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007